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1 Introduction

We can visualize acquaintances’ appearance by just hearing their
voice if we have met them in past few years. Thus, it would appear
that some relationships exist in between voice and appearance. If
3D head geometry could be estimated from a voice, we can real-
ize some applications (e.g, avatar generation, character modeling
for video game, etc.). Previously, although many researchers have
been reported about a relationship between acoustic features of a
voice and its corresponding dynamical visual features including lip,
tongue, and jaw movements or vocal articulation during a speech,
however, there have been few reports about a relationship between
acoustic features and static 3D head geometry. In this paper, we
focus on estimating 3D head geometry from a voice. Acoustic fea-
tures vary depending on a speech context and its intonation. There-
fore we restrict a context to Japanese 5 vowels. Under this assump-
tion, to estimate 3D head geometry, we use a Feedforward Neural
Network (FNN) trained by using a correspondence between an in-
dividual acoustic features extracted from a Japanese vowel and 3D
head geometry generated based on a 3D range scan. The perfor-
mance of our method is shown by both closed and open tests. As a
result, we found that 3D head geometry which is acoustically simi-
lar to an input voice could be estimated under the limited condition.

2 Feature Extraction

We constructed a database which contains 70 individuals’ range
scans (50 males/20 females) with neutral faces and 5 Japanese
vowel speeches for each individual. For a geometric feature, 3D
head models are semi-automatically generated from each range
scan in the DB based on the Radial basis functions and the non-rigid
ICP algorithm [Amberg et al. 2007] with a template head model
consisted of 1621 vertices and 3174 triangle polygons. We then
apply Principal Component Analysis (PCA) to 3D coordinates of
all generated head models to reduce its dimension (from 1621 to
90) while holding 95% variance. Here, these principal components
for a 3D head model are referred to as Geometric Feature (GF).
For an acoustic feature, we extract 13 Mel-frequency Cepstral Co-
efficients (MFCCs), their delta and delta-delta coefficients from a
vowel speech at 10 msec intervals. This is because these coeffi-
cients are widely utilized in speech recognition task [Reynolds and
Rose 1995] and can represent speaker’s characteristics. We then
combined these coefficients into a vector and refer to the 39 dimen-
sional vector as an Acoustic Feature (AF). To reduce the dimension
of AF, PCA is also applied to all subjects AFs for a vowel in the
database while holding 95% variance. Finally, we can obtain 19
dimensional acoustic features for each individual at 10 msec inter-
vals.

3 Mapping between 3D Head Geometry and
Acoustic Features using Neural Network

To represent a mapping from an AF to a GF, we use a FNN which
has 1 input, 2 hidden and 1 output layers, 19, 180, 180 and 90 neu-
rons with Sigmoid function in each layer. We set the hyper param-
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Figure 1: The overview of 3D head geometry estimation

Table 1: The estimation accuracy

Closed test 10HCV test SSVS test
RMS (mm) 0.53 6.69 4.18

eter α and β of the sigmoid function to 0.475 and 1.0 respectively
based on the 10-hold Cross validation test. To train a FNN for each
vowel speech, we use pairs of AFs and GFs for all subjects’s vowel
speeches in the database. MFCCs represent acoustic characteristics
of vocal tract (i.e the shape of mouth cavity). Thus, this mapping
means the correspondence between a shape of mouth cavity and the
3D geometry of a head.

4 Results and Discussions

To verify the performance, we performed Closed and 10-Hold
Cross Validation test (10HCV) using 70 individuals’ GFs and AFs
for Japanese vowel ”a”. The Root Mean Squared error between
ground truth and the estimate 3D geometries for each test is shown
in Table 1. As for the open test, we also evaluate for Same Sub-
jects’ Vowel Speeches recorded at the different timing from closed
tests’ ones (SSVS). The estimated 3D geometries are rendered in
the supplemental materials. These results suggest a possibility that
we can estimate plausible 3D head geometry from a speech under
the limited condition when same subjects speak same vowels. Also,
we found that 3D head geometry which is acoustically similar to an
input voice could be estimated. Currently, the geometry estimation
is sometimes unstable due to the variation of individual acoustic
features. We therefore need to look for more robust and text inde-
pendent acoustic features representing an individual. As a future
work, we plan to enlarge the database and to perform subjective
evaluations to verify the performance of our method in more detail.
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